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SOUND FIELDS . .DIATED
BY ARRAYED MULTIPLE SOUND SOURCES

C. HEIL - M. URBAN

0. INTRODUCTION

The recent trend to increase both the level and the coverage of the acoustic radiated power,
leads to an inflation of the number of individual sound sources (boxes). Nowadays some
concerts involve more than one hundred boxes. Unfortunately arraying boxes arises
interference phenomenons which are not easily mastered. As far as linear frequency
response, directivity control and power level at long distance are concerned, the results can
be disastrous.

Large arrays of boxes, the'characteristics of which are well known, lead most of the time
to very surprising results. The question is to know wether or not it is possible to predict the

behaviour of an array when the the behaviour of each element is known.

Our purpose is to describe the sound field produced by arrays in such a way that criteria for
arraybility can be defined.

The sound field of an ensemble of sources can be roughly divided into three categories :
near, transition, and far region. The terms near and far are usually defined as being related
to the distance between the listener and the array. In fact the border lines are highly
depending on frequency. The geometry depending on the conditions the far region can be
only a few meters away from the arrayed sources or hundreds of meters. We have chosen,
for convenience to rename regions. (the near region will be named «Fresnel». It may be
approximated quite correctly ; the transition region will be named «chaotic» because it
comprises many patterns and is not amenable to simple descriptions ; the far region will be
named the «Fraunhofer» region. It can be described, despite its numerous interference
patterns.

We will first define simple ways to know how these three regions are distributed in the hall
as a function of the arrayed sound sources geometry and as a function of the sound
frequency.

Then we will describe the average behaviour of the sound field inside each of them.

We limit the scope of this paper to two kinds of elementary sound sources : circular and
rectangular, flat isophasis pistons.

The object of this paper is concerned only with large halls or open air installations and thus
we will examinate the sound fields for listening distances larger than the size of the array.
Room and floor reflexions will not be taken into account.

I. SINGLE SQURCE
I. 1. Generalities

Inorderto focuson the importantaspects we omit, most of the time, unnecessary
multiplicative constants.
We use the Kirchoff formula which gives the sound pressure ata point M inside
a volume as a surface integral. () : [1]
. e \
AM)ak | ufs) &5 Lreos® g ()
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k 1s the wave number : k = = o

r is the distance from the surface element ds to M. ,
f is the frequency and ¢ the sound velocity assumed to be 330 my/s.
u(S) is the normal velocity of the surfuce element ds and y is the angle between

the normal to the surface and the vector r
Figure 1 displays the situation in the case of a planc vibrating piston. The surface is the total
plane with u(S) non zero only an the piston,

Sfigure 1

1+ cos y . . .
The term _'"'"Q_WH» can be interpreted as the sum of a monopole and a dispole. As we
will be interested only by conditions such that W <45°, we will neglect the cos y vartations
in the qualitative approach but we keep this factor in our numerical integration program. We
thus assume in the following that

1 + cos v |
2

In equation (1), the product ku(S)ds is proportional to jou(S)ds and since
we regard only pure frequency sound with e** time dependance, this product is also
proportional to the time derivative of u(S)ds. We assume that elementary sound sources
are of the constant volume acceleration type, so that ku(S)ds o a, ds where a isa
constant acceleration. This can lead to the simplified expression :

ik
M) o an (s) “;Y ds (2)

vhung ax

The phenomenons being complex we will look at them from several points of
view, namely : analytic simplificd integration (when possible), Fresnel zones and geometric
diffraction. The numerical exact integration program is used to verify our qualitative results
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but this is only interesting when the answers are already partly known.
The numerical integration is of little interest to get insights into these phenomenons.
One of the concepts which is widely used in churucterising sound sources, is the
dirccti\)ity [2]. There are several definitions of the directivity, but the basic idea is to give
a number for the solid angle extent of the flow of energy of a given sound source within a
6dB max deviation.
An isotropic point-source radiates over 4 steradians and a directive source
radiates most of its energy into a solid angle AQ. The directivity factor Q is defined as :

4n
Q=—
AQ

The interest of this rough number is to allow the determination of critical
distances for intelligibility,
This is shown in fig. 2.

figure 2

S being the area of a hall, a being the average absorption coefficient of the walls, and d the
distance from the sound source.
The critical distance d_is then given when a <<1 by :

d.=0.14YQ Sa

The directivity concept, by itself, assumes that the source is a point and
therefore that the energy flow expands radially. We will show that inside a Fresnel region

the average energy flow is either constant or propotional to ‘lr' It is only in the Fraunhofer
region that the usual directivity concept makes sense again.

A very common way to display data is polar plots. Clearly again, this is valid
only in the Fraunhofer region. Polar plots in a plane wave are useless to describe the sound
intensity. Howeverthis is whatoccurs when the microphone stands inside the Fresnelregion

of a plane array !

L. 2. Single circular source

We describe here the sound field created by a single flat vibrating piston on a
plane infinite wall. Let D be the diameter of the piston, 8 the angle of observation with
respect to the normal axis.

I. 2. a - The Fraunhofer region

In this region, the sound pressure is given by the equation :
LFqu
plro)=l 2

J, is the Bessel function of first order (réf.) |3]

L gn g

. . . 1 . .
The energy extends radially with a 5 dependance of the sound intensity.
r

If we define o =Dsin0 _3 Df sinB, D in meters, fin kHz, the pressure only depends on «
A

through a universal function.
When D and f vary, the real range of o is given by

OSBS’% = 0<a<3Df

When f increases, being constant D, o =3Dfalsoincreases, and thisreveals anincreasing
portion of this universal function (zeros are coming in the physical region).

1y (na)

The first zero of isat o = 1.24

na
figure 3

Infig. 3 werepresent this universal curve. The secondary lobe ato = 1.6 is about
18 dB below the main peak. If we define the AQ as — 6 dB of the main peak we find :

a_g=0.7 thus sinB_g= A7

3Df
The increase of directivity with f is a well known phenomenon that can have
undesirable consequences in arraying since large dimensions of arrays will have a great
influence on the audio spectrum because of the (Df)? dependunce.
I. 2. b = On axis analytical approach
When integrating equation (2) with M or OZ axis, one gets :

S/

4

p(ry A sin




figure 4

The results of the numerical program are shown on figure 4, in dotted line.

When r>> D we have :
2

|
P o ——HD —
4 2r

This is the region of spherical waves, that we call the Fraunhofer region, where
the sound intensity goes as (lz} and is independant of the frequency.
r

D
When r<< 5 we have :

p(ar sin"zl -S—) =3lfsin (3E2-D- g

this is the near region or Fresnel region where the average sound intensity goes
S (l> and is independant of the distance,

Between these two regions the pressure drops to zero when :

l
.

r + T - r) =nm nisaninteger. (3)

The farthest zero occurs when n =1, thatis:

(_D_)' _ 1] (4)
24 (f in kHz)

(D, A in meters)

The border line between Fresnel and Fraunhofer can be defined as a distance

r > r,, because then we have no longer interference effects. The source can then be
considered as a point source and we are in the Fraunhofer region.

A
n=x

We define the border line quantitatively as the distance where the true pressure is 3 dB
below the Fraunhofer asymptotic pressure.
Whenr > % we get:

2 ' - yfRED?
p()..__qn(x ~,§—f[]—-)-(6—) with X-—}f——gg—

we get rwdu'from we 3 dB condition which translates into

(3

1__X

x? ~1.4=3¢0D2
3 = x~1.4 3t8r

1
vz

iy ~ 3 D =0.84
Thorder 814 08 fD?

On the other hand, we get from (4) that this border line occurs only when

D L
A= 5 for greater wavelengths, the sound field is pure Fraunhofer.

We note that in the Fresnel region, when it exists, the pressure, apart from the
large pressure dips, is constant (plane wave).

I 2. ¢~ The Fresnel regions

Inorderto have amore physical approach of the situation, let us consider it from
the point of view of Fresnel. According o Fresnel himself we draw spheres centered on M
. . A Ao )
and the radii of whicharer, r + PEENS S This is shown on figure 5

figure S

The number N, of Fresnel zones on the circular source 1s

The alternance of positive and negative zones that are seen from M, are
responsible for the pressure dips we described in 1. 2. a ~. The successive rings cancel each
other almost exactly leaving a reduced effective radiating area whose radius is

2

r2+K r
4

Back to the number of Fresnel zones @ N, we see that when z increases or f

decreases to the point where N, =1, this gives the limit of the Fraunhofer region.
. D2
NFZ =1
D’
2%( et
4
6
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__— D
borkr = T 7
a4
3yl -1 N Trey vi
Thorder h D f(l 3o when | <3D there is no Fresnel region.

L 2. d - The geometric diffraction approach

The half angle opening of the sound intensil‘y in the Fraunhoferregion is given
by :
sinf=cgd =20 with =124
D 3pr (©)
figure 6

Figure 6 represents the behaviour of sound propagation. The distance of the
border line is given by the intersection point between the main pressure lobe of the
Fraunhofer calculation and the plane wavefront of the circular piston :

._D__D¥1-sin® . 3 p¥ o’
= = thuS My =2 =24/ | ——L (7)
21g8  2sin@ 2 92t
L. 2. e - Summary of border lines expressions
From the on axis analytical approach (I. 2. b) we obtained :
Ty = 0.84 D
From the Fresnel zones approach (1. 2. ¢) we obtained :
Ihome =3 D¥--L  and A>D no Fresnel region
4 12t orf< 515 only Fraunhofer

At last from the geometric diffraction model we found :

- —— r>D no Fresnel region
=3 f\/l L o -
Thomdy = = =0 —— and only Fraunhofer
2 9D orf< %‘-)’- d

This proves to be consistent, and hence we will use the last formula :

Let us remind ourselves that this is the distance beyond which we are in the
Fraunhofer region, hence the only region where the directivity concept makes sense.

Inthecaseofasing’  urcethe bord “svery nearto the source (usually below one meter)
and we don’t have ty care about the Fiusnel region or where the directivity and polar plots
are useless. On the contrary, when we are involved with arrays we will see that the border
can be located very far away.

L 3. Single rectangular source

We turn now to the description of the sound field produced by a single
rectangularvibrating pistonon a plane infinite wall. The work has beendone by S.P LIPSHITZ
and 1. VANDERKQOOY [4] for & wire which is very similar to a thin strip behaviour,

Let Wand Hbe respectively the width and the height of the strip, and 8, @ the usual angles
in spherical coordinates (fig. 7)
figure 7
I. 3. a - The Fraunhofer region
| sinma sin o3
r

plr, 0, ) @
o nf
We use again universal parameters « and B defined as :
o=t ¢ng sing = 3Hf sinB sing  and P =W ing cosg = IWF sinB cosp
A A
Jigure 8

The universal curve for B=0 (=~ ) is on figure §. The zeros are given by
2
a=n. The first zerois o = 1 and we recall that for a circulur source itis o = 1.24 .

The - 6 dB point of the main peak is at a = 0.6 which gives :

For ‘let— . sin @ _¢ =00
2

3Hf°

The second lobe occurs at o= 1.5 where the intensity is 13.4 dB below the main
peak.
As in the case of a circular piston we have an increase of directivity with the square of the
frequency.

1. 3. b - On axis analytical approach

Unlike the circular source we cannot getsimple closed forms even if we neglect
1+ cos
ISV erm
2
Assuming that the width is much smaller than the height and smaller than the wavelength
at high frequencies, no interference is expected across the width. We are still assuming a

the



constant volume acceleration (see fig. 9).
figure 9

Supposing d 2

] =o

d+ 2
r d+2d

Let us split the integral into real and imaginary parts.

2d\37 T4 d
f (vo) = I 8Lt
£ aikd 0
P(M)cxﬂkzde VIm (fg +1) w0
fl(Vn)=v-l,7:/ SL{"E_de

fR and f1 are well known tabulated Fresnel Integrals. {5}
figure 10

Figure 10 represents the affix of f, +if as v, goes from 0 to e, This is to be understood
as for a given distance from the source, the complex pressure value is oscillating, following
the Cornu spiral, as H*f goes from 0 to .
The sound intensity is proportional to the modulus square of OP.

The sound intensity never goes to zero, and this makes a major difference with
the circular source. However the intensity goes to a limit with an oscillatory behaviour of
smatller and smaller u;nplitudcs around the average value :

z\-:_‘_
d  3df

The maxima and minima of f and f, are given by :

fR —)v():(n—-él—')n

fi—= vop=nx nbeinganinteger.

The dips of P are thus given by an intermediate value that we can approximate as :

2
V,,:(Zn~%)n:n'—j—j—:
S(HP_ L _HE_ 3t

& <2)7\.(2n—}1—’ 42n—~}7

The farthest dip is given by :

To be compared with the asymptotic formula (4) changing H in D we obtain the same
minimum pressure locations.

We now haveanideaof the dependance of the pressure on d when v << 1 wecan approximate:

e~ thus / gz—:Z«/V(_{

Vv
so that :
ikd
2 ikd k H :
PM=1/{ge 2V 3g 7=Hg

In this region, the sound intensity goes like - and is non-frequency dependant : it cor-
d
responds to the Fraunhofer region. ,

As we see on figure 10, the border can be determined by :

- o2
v, = 1.5 r}xm—%Hf

When d is farther than the border line as defined above, we have a Fraunhofer

. . . . . . 1
region with a regular behaviour of the sound intensity which decreases as -5 and when
' d

d is smaller we have an oscillatory behaviour around an average value of (‘5

I. 3. ¢ -~ Fresnel zones

When compared to the circular piston we have the same pattern of rings
(figure 11) but their areas are widely reduced except for the central zone.

figure 11

The area of the central zone is approximately

2

d+%— !

W ~-d

when d >> A the area goes as \/—‘Tr

The sound intensity is thus proportional to Zil? and we find again the Fresnel region typical

s . 1
of a cylindrical wave which decreases as ]'i and not as —
d”

10



Again the number of Fresnel zones, N_, is given by

2
H

Np=
2
2X d°+— +d

The distance of border line defined as N =1 is given by :

SImro L (sillfinK
Phorder 4H2f F (still fin Khz)
(d in meters)

1. 3. d - The geometric diffraction approach

From 1. 3. a the first zero of the diffraction field is given by a =1 thatis for

©
1
0ol F

3 Hfsinf =1
figure 12

The scope is the same as in figure 6. See figure 12.
And we obtain, from the same calculation

CL3HE [ o -1
o =3 0 1 5 @F (w=1)

1. 3. e - Summary of border lines equations

From the on axis analytical approach (1. 3. b) we obtained :

= § W

From the Fresnel zones approach (1. 3. ¢) we obtained :

rm:%}ff__l_ { A>H } no Fresnel region

12f 0rf<§lH—

From the geometric diffraction picture (I. 3. d) we obtained :

T = 1.5 H'Y AL [ A HI no Fresnel region
{3fH)* orfe=

3H

For convenience, choosing the geometric one :
=3 i -
Thorir = 5 H¥,[1- e T, i mEtETS

11

and f < -~ no Fresnel region.

L
3D
I. 4. Comparison between point, circular and strip sources
The comparison of border line expressions 1.2.e and 1.3.e for circular or rectangular sources,
shows that one can sum up these expressions into a unique one if D designates either the
diameter of a circular piston or the height of a rectangular piston.
=3 <D’2 f 1 a()z
Thondr = o T
Qy 9 (D)~ 1

with o, = 1.24 for a circular piston,

a,=1 fora strip.

In order to make the comparison we display on figure 13, the sound intensity as a
function of the frequency and the distance d.

The point source radiates a pure Praunhofer field and we can represent it as a piece
of cake.
When the source is no longer a point but has a non neglectible size, a part of the "cake™

disappears leaving the Fresnel zone.,

The circular and the strip show the same border line if D = H, but they differ significantly
inside the Fresnel region.

-
1
circular strip point
. ‘ constantinside | ;. . 1
average | for a given { . Fin Fresnel o
Fresnel -4 in T rZ
P 4 in Fraunhofer
Fraunhoter I‘
";; in Fresnel lf— in Fresnel
fora givenr A . P cm
average | fora given C in Fraunhofer | C" in Fraunhofer
locations of intensity dips Same locations no dips
depth of grooves infinite afew dB
(cancellations) | and decreasing

These border lines being as such itis impossible to equalize the sound intensity in frequency
because as the distance changes, the transition of the intensity between Fresnel and

Fraunhofer occurs at various frequencies.

Furthermore the transition line reveals large differences in the propagation mode of the
sound wave, from plane wave to spherical wave in the case of a circular piston, and from

cylindrical wave to a spherical wave in the case of a strip (fig. 13).



Once again, there should not be matter of concern as long as a single electrodynamic
loudspeaker is involved because of its usual range limited to A > Diameter, and also because
such a loudspeaker cannot be considered as a real flat piston at high frequencies.

However the problem may occurat high frequencies forribbon and electrostatic loudspeakers
that have large dimensions compared to the wavelengh.
At last these phenomenons have major consequences in arrays.

figure 13
II. PLANE ARRAYS

I1. 1. Generalities

We restrict the term array to an ensemble of identical elementary sources arranged

in a regular network that can be described by a few numerical values that are
— the size of the elementary piston;

* D for the diameter of a circular piston

* H, W respectively the height and width of a rectangular piston
— the network parameters :

« vertical : N,, sources piled up with a step STEP,,

« horizontal : N sources lined up with a step STEP,, (see figure 14)

figure 14

The step being defined as the distance between the centers of two contiguous sources.

The array is operating in free field conditions.
We developped a program to calculate the pressure produced by N, x N,, identical sources,
organised in N, columns, each column making an angle 6, with its neighbours. In this work

weset 8 =0

The program is based on Fresnel rigourous calculations and Fraunhofer approximation at
long distance (sec Appendix I and II).

The geometrical diffraction approach depicted in figure 15 reveals a new region : the
transition region comprised between the individual Fresnel region of each source and the
collective Fraunhofer region of the array. The transition region will be named chaotic as it
is not amenable to simple description (at least we did not succeed to do so).

figure 15

Once again, the same calculation as for (1. 2. d -) leads to the expression of two border lines ;
— Ry 1S the border line between individual Fraunhofer and chaotic region defined by :

- STEP.

}
Thomta =
"2,

13

o

with sin 8; = TDF a, = 1.24 circular piston
' =1 rectangular piston
—
thus r[lmm=lDS’I’EPf 1%
2w 9DA?

D is in this case either the diameter or the height of the strip.

- d;m is the border line between chaotic and collective Fraunhofer region defined by :

1 »
3NSTEPf

thus B, =3 N2STERf, [1 - — 1 ____
Pokr 72 V ' 9 (NSTEP )2

NB : STEP is either STEP,, or STEP,, according to the plane of observation,
respectively horizontal or vertical.
By analogy with [.3.e, we have the following simplified expressions of the different border

sin 92=

lines :
— individual Fresnel /Fraunhofer border line.

%-3% &) for t~>a() .

20y 12f 3D
- individual / chaotic border line.

| .3DSTEPf_  STEP o
Toords = o ao‘)Df for f>3[)'

D iseither the diameter or the height of the piston o, = 1 (rectangular) ; o, = 1.24 (circular).

- chaotic / collective Fraunhofer border line

=3 N2STER2 f— L S
rgmh 2N STEP-f 37 for f‘>3NSTEP.

figure 16 illustrates the partition in the plane (d, f).

figure 16



IL 2. Description of the Fraunhofer region for:  -ray
11. 2. a — The form factor
Let p, be the pressure field of one source at point M. The pressure delivered
by N identical sources can be written as the product of the individual pressure of one source
by a form factor F,, (8, @) :[6] (see fig. A2)
Pn(r, 6, @) =p,(r, 8, 0) F; (8. ¢)

F,, depends only upon the positions of the sources. It is a geometrical quantity

Fu (6, (P)=i€ik}'r
!

4

]

& : displacement vector of the ith source, one of them beeing choosen as origin,
For a wall of regularly spaced boxes we have :

{  kSTEPy . _ k STEP, .
sin ‘N A T $inb sing sin{N Wy $ind cosQ
Fule, )= —— o
. [k STEPy | | . |k STEPy |
sin ———z——sme sing sin -————-2———sm8 cosQ
- N=NJ,N

V' H
We willobserve Fy when N =1 because itdoes notchange the fundamental understandings.

We define the parameter :

STEP

$in@ sin @ = 3 STEP f sin B sin @

Under such conditions :
sin (Nan)
FN: ———————
sinaur

figure 17 et 18

The square of this function is represented in figures 17, 18 for N=4 and 16.
For 0 =0 we have a reinforcement N The axial intensity is thus proportional to N?, but

the width of peaks is reduced by -I\IJ— ; the energy is thus conserved.

The full Width at half maximum (- 6 dB point) occurs at o = QNQ , but each time that ot is

an integer the sound intensity goes up to N?, the value at 6= 0. Those secondary peaks that
can be far from axis must be carefully looked after. Because of these peaks, the usual concept
of directivity may be irrelevant,

The number of smaller peaks between two N? peaks is N -2 and the intensity of the second
peak is always in the ratio :

i ={).044
2
n

or — 13.5 dB and is non-dependant of N.
[1.2.b- Limit conditions for existence of secondary lobe
We must be able to know where is the real region.

STEP

sinB sing =3 STEP fsin 6 sin ¢

Lo T .
o  isgivenby 8=¢= 5 that is

O = STy 18
by

The second N? peak enters the physical region as soon as
o >1 thatis 3STEP{> |

max

The form factor may thus be considered as function of o and N, limited to the real region

o € [0,3 STEP f] and depending only of the number of sources.
11.2.c~ Calculation of the sound pressure

The resultant pressure is the product of F by the individual pressure p,.

if (Jthine}
A

circular : Py = ——lee
D ging
A
sin {n lisme}
. A
slot pp=—— et
I g

As for the form factor F, the real region depends on D (or H) and f.
circularzor | =3Df
slot:a  =3HT

The figure 2 of appendix 1I shows the sound intensity produced by a line array of 16
circular pistons, that is the product of p, by F after scale normalization.

16



11 3. Chaotic region

IL 3. a. Location in the distance versus frequericy plane
To have anidea of the complexity of the chaotic region, we can make use of the propagation
equation for the sound pressure p :

Ap +kp =0

For an infinite number of elementary sources, all identical, and if we restrict to a
bidimensional problem, we can separate the pressure into two terms :

p(x, zfu f2) Z a, einkx

with kg =

STEP

The individual harmonics verify :

A% {21212 6,
o n2k?2 -k f2)

zZ
If we suppose that flz) ae” , we obtain :

N

e

When, A > S’[;‘EP the n™ spatial harmonic propagates and when A <24 STEP we have astrong
exponential attenuation of the network structure perturbations. As an example when STEP
is about one meter, the chaotic region appears for any frequency higher than 300 Hz. We

obtain the same condition as in I1. 2. b,
f<1/38TEP

IL. 3. b. Rough description of the sound pressure
A meanstoevaluate the huge differences betweendiscrete sound sources and a uniformone,

when > ﬁ%‘wﬂ’— consists in considering point sources (D or H = 0) in the Fraunhofer

region. To be specific, let us consider, on figure 19, five ponctual sources and let us evaluate
the sound pressure at M.

Figure 19

N, STEP

Staying at distances d 2 — we can approximate r_ as

'd {] +n2 STFPZ)
232

. 1+
Assuming, as ust — ], have :

N, STEP STEP
2WEP
1+2 Z T .
p (M)~ %ﬂi N, N = {(Fraunhofer * Formfactor)
ﬁgzcre 20

Figure 20 shows the affix of the form factor term, when N =5.

The modulus of the form factor is OP, where P is the point whose position depends upon
p=n3T S’I'EP2

Ad
We see thatas d or fvaries, the length OP varies constantly by large amounts. The amplitude

of the oscillations range from
(0.2)2=4.10"*10 12 = 1. This is 14 dB. The dip positions are given by :

d =_3 STEP? _9fSTEP?
n
n+l oy 2n +1

By comparison, a continuous "ribbon" of jointed sm’ps‘ of height STEP, considered as a

single slot of height H = Nv STEPv and strength »»»»»» has been studied in 1.3.

The 5 point sources always have a —% decreasing sound intensity. This is in contrast with
d

the single strip which decreases as (—‘j in the Fresnel region.

Furthermore the oscillations of the intensity are always minimized in the case of the strips.

I1. 4. The Fresnel region
Its location is shown on figure 16. The sound pressure has exactly the same bchzmour than

the single sources described in § 1.

A flat wall generates a plane wave, whose zeros move along the same lines in (d,f) asin L.
The on-axis pressure decreases to zero as in the case of circular individual sources.
In the case of a single column, i.e N = 1, it generates cylindrical waves expanding as
I
pld) o ==
v
Hence, when f < — I , the Fresnel approach is correct and the discrete network of sound

3 STEP’
sources is equivalent 1o a continuous extended sound source.
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IL 5. Arrayability condition for a plane array

One can picture an array as the sum of two virtual sources A and B, respectively producing
a pressure P, and Py.

A : is the continuous ideal source whose size is the size of the array.

B :is the network of elementary single sources formed by the space between actual sources,
vibrating in phase opposition to A. It is the perturbation to A.

The resultant pressure in the sum of the two terms P = P, +P,.

P, has been described in Land P, in II.

According to equation (2), the maximum of PA is obtained on axis and is proportional to the
height of the array : (N - 1) STEP + D (7).

P, is mainly governed by the form factor, this being magnified when the space between
actual sources decreases. The secondary N? peak of P, can be responsible for an important
off axis secondary lobe.

It occurs at sin 8, = 1/3 f STEP.

We define a condition for arrayability as being :
1. absence of chaotic zone ;
2.no peak outside of the main lobe shall be higher than - 12dB below the main peak pressure.

When f < 1/3 STEP, this peak does not enter the physical region.
When > 1/3 STEP, the pressure of the secondary peak is proportional to the effective size
multiplied by sinnov/mo (see 1.3.a) that is

sin 7 (1 — D/STEP)

(N =D STEP-D) =5 psren) )

Requiring the total pressure at = 8_ not to be lower than - 12 dB below the maximum on
axis pressure, leads to a very simple limit condition, derived from (7) and (8), that is :
D/STEP > 0.80 (9).
This restrictive condition can be achieved in the case of a rectangular source ; but it will
never be the case of a circular source even when the sources are close together.
This is related to the average value of the size of a circle of diameter D, that is

<D> = 2D/n.

In this case <D>/STEP is always below 2/m = 0.64 even when D = STEP and condition (9)
is never achieved.
Returning to figure 16, which shows an absolute limit in frequency, f < 1/3 STEP for any
D, to match a good arrayability defined in 11.3.a as the absence of chaotic region, thisreveals
now another condition : the size of the source with respect to the network step, which can
be unterpreted as a « filling coefficient» 1 giving :

n =D/STEP > (.8 for any frequency.
Reciprocally the two conditions for arrayability in a plane defined previously are met as we
obtain
either : £ < 1/3 STEP forany D :
or: M =D/STEP > 0.8 foranyf.

HL CONCLUSION

This paper sets forward the basic difference in the sound field strucutre produced by a single
source and a plane array. The existence of a chaotic region and the form factor in arrays is
responsible for large irregularities in the sound intensity and spatial coverage of the
audience zone, which also means that a usual concept like directivity is irrelevant in this
case. ‘

The only mean to solve these problems is to define criteria for arrayability, which, when
achieved, allow the array to behave exactly like an equivalent single source having the same
size as the array.

We have seen that these criteria are very strict, the first one, f < 1/3 STEP for any D leads
to a network step of less than 3.3 cm when a 10 kHz upper frequency limitis to be achieved
with ponctual sources ; the second one, leads to a «filling coefficient» of more than 80 %
of the array with flat isophasis rectangular pistons. :

If one of these two conditions is achieved, the network can be considered as arrayable. The
chaoticregiondisappears, leaving only the Fresneland Fraunhoferregions, which characterize
the single source.

The main results are shown in figures 13 ans 16, where we driaw the average behavior of the
sound intensity and the border lines in the distance frequency plane.

For asingle loudspeaker, the Fresnel region never enters the audience zone, the border line
being below 1 meter.

When considering arrays 3 meters high, the border line for 1 kHz in 15 meters away from
the array and for 10 kHz, it is 150 meters 11!

This shows the importance of the Fresnel zone in arrays. Once again usual concepts like

I/rtintensity dependance, directivity and polar plots are irrelevant in that region, these
concepts being only relevantin the Fraunhofer region, which can be very for from the array.
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APPENDIX 1

Description of the exact treatment of circular piston software.

This program has been written to examine the Fresnel and chaotic regions of a sound field
radiated by arrays of circular pistons.

. . 1 +cosy . . .
Using formulal, hence keeping the term 5 we split the area of each circular piston

in polar areas as shown in figure Al
Jigure Al

Then, we approximate the integral of formula I by a discrete sum of these surface elements.

v is the angle beetween MM and the normal to the piston under consideration.
Then the sound intensity is proportional to the squaredmodulus of the complex pressure
p(M).

b

APPENDIX IT

Description of the curved array simulation software.

The program calculates the sound intensity delivered by N, columns of N, sources each.
Each columnis tilted by an angle 8, with respect to the contiguous ones. The origin is taken
on the first column at its center.

We are in the Fraunhofer region, for each column, using the analytical expression with the
form factor of paragraph I.2.a.

The figure A Il shows the different variables.

Figure Al

Let be:

O, : the center of the n* column.

i the unit vector which goes from the origin O, to M the observation point.
sin O cos @

t=19 sin@sin@ p=sin6cos@i+sin @ sing]+cos Ok
cos 6

i, j X unit vectors along O,x, O,y and O,z.

p(6,, @) : the pressure field given by the n* column.

The polar angles 6_and ¢_ define the direction of observation with respect to the n® column

which is O xyz rotated around O,y by the angle (n 1) 6,

We have :
| sin 8y |
STEP cos ‘-n 2 ()d) (‘;' Cos ”é (o
sin 3”»
O/an =
sin ﬂﬁﬂ
— STEP sin (n; ! G(j) 8~ - COS an ! 8,
sin Eﬁ

8 and ¢_are computed from :

sinB cos @ =sin® cos @ cos (n-1B +sin 8 sin @ sin (n-1)0,
sin@ sing =sin6 sina

cos 6 =cos B cos @ sin (n-1)0 cos (n-1)B,



The program computes the complex pressure :

=Ny,
om0, 0o E eiki. OO, p (64 o
n-1

Either for a circular or a rectangular source.
For instance for a strip we have :
sin (klzi sin@, cos (pn} sin {k\—;‘/— sinB, sin @,

kg—- sinfy, cos @y ' k—\zi sinB, sin @,

p(env W) (03

H is the height of the strip and w the width.

The sound intensity is proportionnal to the modulus squared of p,, (8, @) and is plotted as
a function of the horizontal and vertical distance cither as a bidimensional plot or as a
projection along the horizontal or vertical axis. (Fif. A2 - 2)
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Fig 5. Drawing the Fresnel zones for a circular piston .
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Fig 18. Form factor of 16 sound sources .
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Fig 19. Line array of 5 ponctual sources : parameters Fig 20. Affix of the form factor forr Nv=5 .
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Fig.A2-2 : Angular distribution of acoustical pressure of a
plane array in a Fraunhofer mode.
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